Approximating the Moments of Generalized Gaussian Distributions via Bell’s Polynomials
نویسندگان
چکیده
Bell’s polynomials are used in many different fields of mathematics, ranging from number theory to operator theory. This paper shows a relevant application probability aimed at computing the moments generalized Gaussian distributions. To this end, table containing first values complete is provided. Furthermore, dedicated code for approximating general distributions terms detailed. Several test cases concerning nested functions discussed.
منابع مشابه
Even moments of generalized Rudin-Shapiro polynomials
We know from Littlewood (1968) that the moments of order 4 of the classical Rudin–Shapiro polynomials Pn(z) satisfy a linear recurrence of degree 2. In a previous article, we developed a new approach, which enables us to compute exactly all the moments Mq(Pn) of even order q for q 32. We were also able to check a conjecture on the asymptotic behavior of Mq(Pn), namely Mq(Pn) ∼ Cq2, where Cq = 2...
متن کاملApproximating the Distributions of Singular Quadratic Expressions and their Ratios
Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...
متن کاملAbsolute Moments of Generalized Hyperbolic Distributions and Approximate Scaling of Normal Inverse Gaussian Lévy-Processes
Expressions for (absolute) moments of generalized hyperbolic and normal inverse Gaussian (NIG) laws are given in terms of moments of the corresponding symmetric laws. For the (absolute) moments centred at the location parameter l explicit expressions as series containing Bessel functions are provided. Furthermore, the derivatives of the logarithms of absolute l-centred moments with respect to t...
متن کاملGeneralized Bell Polynomials and the Combinatorics of Poisson Central Moments
We introduce a family of polynomials that generalizes the Bell polynomials, in connection with the combinatorics of the central moments of the Poisson distribution. We show that these polynomials are dual of the Charlier polynomials by the Stirling transform, and we study the resulting combinatorial identities for the number of partitions of a set into subsets of size at least 2.
متن کاملDynamic Boltzmann Machines for Second Order Moments and Generalized Gaussian Distributions
Dynamic Boltzmann Machine (DyBM) has been shown highly efficient to predict time-series data. Gaussian DyBM is a DyBM that assumes the predicted data is generated by a Gaussian distribution whose first-order moment (mean) dynamically changes over time but its second-order moment (variance) is fixed. However, in many financial applications, the assumption is quite limiting in two aspects. First,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12020206